Machine Learning (83)
Find narratives by ethical themes or by technologies.
FILTERreset filters-
- 27 min
- Cornell Tech
- 2019
Solon Barocas discusses his relatively new course on ethics in data science, following a larger trend of developing ethical sensibility in this field. He shares ideas of spreading out lessons across courses, promoting dialogue, and making sure we are really analyzing problems while learning to stand up for the right thing. Offers a case study of technological ethical sensibilities through questions raised by predictive policing algorithms.
- Cornell Tech
- 2019
Teaching Ethics in Data Science
Solon Barocas discusses his relatively new course on ethics in data science, following a larger trend of developing ethical sensibility in this field. He shares ideas of spreading out lessons across courses, promoting dialogue, and making sure we are really analyzing problems while learning to stand up for the right thing. Offers a case study of technological ethical sensibilities through questions raised by predictive policing algorithms.
Why is it important to implement ethical sensibility in data science? What could happen if we do not?
-
- 28 min
- Cornell Tech
- 2019
Pre-trial risk assessment is part of an attempted answer to mass incarceration. Data sometimes answers a different question than the ones we’re trying to answer (data based on riskiness before incarceration, not how dangerous they are later). Essentially, technologies and algorithms which end up in contexts of social power differentials can often be abused to further cause injustice against people accused of a crime, for example. Numbers are not neutral and can even be a “moral anesthetic,” especially if the sampled data has confounding variables that collectors ignore. Engineers designing technology do not always envisage ethical questions when making decisions that ought to be political.
- Cornell Tech
- 2019
Algorithms in the Courtroom
Pre-trial risk assessment is part of an attempted answer to mass incarceration. Data sometimes answers a different question than the ones we’re trying to answer (data based on riskiness before incarceration, not how dangerous they are later). Essentially, technologies and algorithms which end up in contexts of social power differentials can often be abused to further cause injustice against people accused of a crime, for example. Numbers are not neutral and can even be a “moral anesthetic,” especially if the sampled data has confounding variables that collectors ignore. Engineers designing technology do not always envisage ethical questions when making decisions that ought to be political.
Would you rely on a risk-assessment algorithm to make life-changing decisions for another human? How can the transparency culture which Robinson describes be created? How can we make sure that political decisions stay political, and don’t end up being ultimately answered by engineers? Can “fairness” be defined by a machine?
-
- 10 min
- The New Yorker
- 2019
Great breakdown of the concerns that come with automating the world without understanding why it works. Provides the principal concerns with the “hidden layer” of artificial neural networks, and how the lack of human understanding of some AI decision making makes these machines susceptible to manipulation.
- The New Yorker
- 2019
-
- 10 min
- The New Yorker
- 2019
The Hidden Costs of Automated Thinking
Great breakdown of the concerns that come with automating the world without understanding why it works. Provides the principal concerns with the “hidden layer” of artificial neural networks, and how the lack of human understanding of some AI decision making makes these machines susceptible to manipulation.
Should we still use technology that we do not have a full understanding of? Might machines play a role in the demise of expertise? How can companies and institutions be held accountable for “lifting the curtain” behind their algorithms?
-
- 27 min
- Cornell Tech
- 2019
Podcast about worker quantification in factors such as hiring, productivity and more. Dives into the discussion on why we should attempt a fair making of algorithms. Warns specifically about how algorithms can find “proxy variables” to approximate for cultural fits like race or gender even when the algorithms is supposedly controlled for these factors.
- Cornell Tech
- 2019
Quantifying Workers
Podcast about worker quantification in factors such as hiring, productivity and more. Dives into the discussion on why we should attempt a fair making of algorithms. Warns specifically about how algorithms can find “proxy variables” to approximate for cultural fits like race or gender even when the algorithms is supposedly controlled for these factors.
What are the dangers of having an algorithm involved in the hiring process? Is efficiency worth the cost in this scenario? Can humans ever be placed in a binary context?
-
- 7 min
- TED
- 2017
Predictive policing software such as PredPol may claim to be objective through mathematical, “colorblind” analyses of geographical crime areas, yet this supposed objectivity is not free of human bias and is in fact used as a justification for the further targeting of oppressed groups, such as poor communities or racial and ethnic minorities. Further, the balance between fairness and efficacy in the justice system must be considered, since algorithms tend more toward the latter than the former.
- TED
- 2017
-
- 7 min
- TED
- 2017
Justice in the Age of Big Data
Predictive policing software such as PredPol may claim to be objective through mathematical, “colorblind” analyses of geographical crime areas, yet this supposed objectivity is not free of human bias and is in fact used as a justification for the further targeting of oppressed groups, such as poor communities or racial and ethnic minorities. Further, the balance between fairness and efficacy in the justice system must be considered, since algorithms tend more toward the latter than the former.
Should we leave policing to algorithms? Can any “perfect” algorithm for policing be created? How can police departments and software companies be held accountable for masquerading bias as the objectivity of an algorithm?
-
- 5 min
- GIS Lounge
- 2019
GIS, a relatively new form of computational analysis, can often contain algorithms with biases based on biases present in the training data from open data sources, with this case study focusing on the tendency of power-line identification data being centered around the Western world. This problem can be improved by approaching data collection with more intentionality, either broadening the pool of collected geographic data or inputting artificial images to help the tool recognize a greater number of circumstances and thus become more accurate.
- GIS Lounge
- 2019
-
- 5 min
- GIS Lounge
- 2019
When AI Goes Wrong in Spatial Reasoning
GIS, a relatively new form of computational analysis, can often contain algorithms with biases based on biases present in the training data from open data sources, with this case study focusing on the tendency of power-line identification data being centered around the Western world. This problem can be improved by approaching data collection with more intentionality, either broadening the pool of collected geographic data or inputting artificial images to help the tool recognize a greater number of circumstances and thus become more accurate.
What happens when the source of the data itself (the dataset) is biased? Can the ideas present in this article (namely the intentionally broadening of the training data pool and inclusion of composite data) find application beyond GIS?