Algorithms selectively favoring certain groups or demographics.
Algorithmic Bias (23)
Find narratives by ethical themes or by technologies.
FILTERreset filters-
- 5 min
- Time Magazine
- 2017
Chicago police enact an algorithm to calculate a “risk score” for individuals based on factors such as criminal history and age with the aim of assessing and pre-emptively striking against risk. However, these numbers are inherently linked to human bias both in input and outcome, and could lead to unfair targeted of citizens, even as it supposedly introduces objectivity to the system.
- Time Magazine
- 2017
-
- 5 min
- Time Magazine
- 2017
The Police Are Using Computer Algorithms to Tell If You’re a Threat
Chicago police enact an algorithm to calculate a “risk score” for individuals based on factors such as criminal history and age with the aim of assessing and pre-emptively striking against risk. However, these numbers are inherently linked to human bias both in input and outcome, and could lead to unfair targeted of citizens, even as it supposedly introduces objectivity to the system.
Is the police risk score system biased, and does it improve or enhance human bias? Is it plausible to use digital technology to eliminate bias from American policing, or is this impossible? What might this look like? Does reliance on numerical data give police and tech companies more power or less power?
-
- 7 min
- TED
- 2017
Predictive policing software such as PredPol may claim to be objective through mathematical, “colorblind” analyses of geographical crime areas, yet this supposed objectivity is not free of human bias and is in fact used as a justification for the further targeting of oppressed groups, such as poor communities or racial and ethnic minorities. Further, the balance between fairness and efficacy in the justice system must be considered, since algorithms tend more toward the latter than the former.
- TED
- 2017
-
- 7 min
- TED
- 2017
Justice in the Age of Big Data
Predictive policing software such as PredPol may claim to be objective through mathematical, “colorblind” analyses of geographical crime areas, yet this supposed objectivity is not free of human bias and is in fact used as a justification for the further targeting of oppressed groups, such as poor communities or racial and ethnic minorities. Further, the balance between fairness and efficacy in the justice system must be considered, since algorithms tend more toward the latter than the former.
Should we leave policing to algorithms? Can any “perfect” algorithm for policing be created? How can police departments and software companies be held accountable for masquerading bias as the objectivity of an algorithm?
-
- 27 min
- Cornell Tech
- 2019
Solon Barocas discusses his relatively new course on ethics in data science, following a larger trend of developing ethical sensibility in this field. He shares ideas of spreading out lessons across courses, promoting dialogue, and making sure we are really analyzing problems while learning to stand up for the right thing. Offers a case study of technological ethical sensibilities through questions raised by predictive policing algorithms.
- Cornell Tech
- 2019
Teaching Ethics in Data Science
Solon Barocas discusses his relatively new course on ethics in data science, following a larger trend of developing ethical sensibility in this field. He shares ideas of spreading out lessons across courses, promoting dialogue, and making sure we are really analyzing problems while learning to stand up for the right thing. Offers a case study of technological ethical sensibilities through questions raised by predictive policing algorithms.
Why is it important to implement ethical sensibility in data science? What could happen if we do not?
-
- 28 min
- Cornell Tech
- 2019
Pre-trial risk assessment is part of an attempted answer to mass incarceration. Data sometimes answers a different question than the ones we’re trying to answer (data based on riskiness before incarceration, not how dangerous they are later). Essentially, technologies and algorithms which end up in contexts of social power differentials can often be abused to further cause injustice against people accused of a crime, for example. Numbers are not neutral and can even be a “moral anesthetic,” especially if the sampled data has confounding variables that collectors ignore. Engineers designing technology do not always envisage ethical questions when making decisions that ought to be political.
- Cornell Tech
- 2019
Algorithms in the Courtroom
Pre-trial risk assessment is part of an attempted answer to mass incarceration. Data sometimes answers a different question than the ones we’re trying to answer (data based on riskiness before incarceration, not how dangerous they are later). Essentially, technologies and algorithms which end up in contexts of social power differentials can often be abused to further cause injustice against people accused of a crime, for example. Numbers are not neutral and can even be a “moral anesthetic,” especially if the sampled data has confounding variables that collectors ignore. Engineers designing technology do not always envisage ethical questions when making decisions that ought to be political.
Would you rely on a risk-assessment algorithm to make life-changing decisions for another human? How can the transparency culture which Robinson describes be created? How can we make sure that political decisions stay political, and don’t end up being ultimately answered by engineers? Can “fairness” be defined by a machine?
-
- 27 min
- Cornell Tech
- 2019
Podcast about worker quantification in factors such as hiring, productivity and more. Dives into the discussion on why we should attempt a fair making of algorithms. Warns specifically about how algorithms can find “proxy variables” to approximate for cultural fits like race or gender even when the algorithms is supposedly controlled for these factors.
- Cornell Tech
- 2019
Quantifying Workers
Podcast about worker quantification in factors such as hiring, productivity and more. Dives into the discussion on why we should attempt a fair making of algorithms. Warns specifically about how algorithms can find “proxy variables” to approximate for cultural fits like race or gender even when the algorithms is supposedly controlled for these factors.
What are the dangers of having an algorithm involved in the hiring process? Is efficiency worth the cost in this scenario? Can humans ever be placed in a binary context?
-
- 5 min
- GIS Lounge
- 2019
GIS, a relatively new form of computational analysis, can often contain algorithms with biases based on biases present in the training data from open data sources, with this case study focusing on the tendency of power-line identification data being centered around the Western world. This problem can be improved by approaching data collection with more intentionality, either broadening the pool of collected geographic data or inputting artificial images to help the tool recognize a greater number of circumstances and thus become more accurate.
- GIS Lounge
- 2019
-
- 5 min
- GIS Lounge
- 2019
When AI Goes Wrong in Spatial Reasoning
GIS, a relatively new form of computational analysis, can often contain algorithms with biases based on biases present in the training data from open data sources, with this case study focusing on the tendency of power-line identification data being centered around the Western world. This problem can be improved by approaching data collection with more intentionality, either broadening the pool of collected geographic data or inputting artificial images to help the tool recognize a greater number of circumstances and thus become more accurate.
What happens when the source of the data itself (the dataset) is biased? Can the ideas present in this article (namely the intentionally broadening of the training data pool and inclusion of composite data) find application beyond GIS?