Limitations of Digital Technologies (21)

Describes limitations and shortfalls of current digital technologies, particularly when compared to human capabilities.

View options:

Find narratives by ethical themes or by technologies.

FILTERreset filters
Themes
  • Privacy
  • Accountability
  • Transparency and Explainability
  • Human Control of Technology
  • Professional Responsibility
  • Promotion of Human Values
  • Fairness and Non-discrimination
Show more themes
Technologies
  • AI
  • Big Data
  • Bioinformatics
  • Blockchain
  • Immersive Technology
Show more technologies
Additional Filters:
  • Media Type
  • Availability
  • Year
    • 1916 - 1966
    • 1968 - 2018
    • 2019 - 2069
  • Duration
  • 7 min
  • VentureBeat
  • 2021
image description
Salesforce researchers release framework to test NLP model robustness

New research and code was released in early 2021 to demonstrate that the training data for Natural Language Processing algorithms is not as robust as it could be. The project, Robustness Gym, allows researchers and computer scientists to approach training data with more scrutiny, organizing this data and testing the results of preliminary runs through the algorithm to see what can be improved upon and how.

  • VentureBeat
  • 2021
  • 6 min
  • Vox
  • 2020
image description
How Virtual Reality Tricks Your Brain

Even virtual realities with unrealistic yet believable graphics are able to fool the brain’s sense of perception into believing that the digital environment still operates under the same rules as the real world. Connecting the technologies directly to one’s senses is more immersive than looking at a screen; although human brains have been able to process flat images for a long time, the direct sight connection to two screens with virtual reality makes perception a bit more muddled.

  • Vox
  • 2020
  • 7 min
  • MIT Technology Review
  • 2020
image description
Tiny four-bit computers are now all you need to train AI

This article details a new approach emerging in AI science; instead of using 16 bits to represent pieces of data which train an algorithm, a logarithmic scale can be used to reduce this number to four, which is more efficient in terms of time and energy. This may allow machine learning algorithms to be trained on smartphones, enhancing user privacy. Otherwise, this may not change much in the AI landscape, especially in terms of helping machine learning reach new horizons.

  • MIT Technology Review
  • 2020
  • 4 min
  • VentureBeat
  • 2020
image description
Researchers Find that Even Fair Hiring Algorithms Can Be Biased

A study on the engine of TaskRabbit, an app which uses an algorithm to recommend the best workers for a specific task, demonstrates that even algorithms which attempt to account for fairness and parity in representation can fail to provide what they promise depending on different contexts.

  • VentureBeat
  • 2020
  • 1 min
  • Kinolab
  • 2019
image description
Limitations of Biometrics

In an imagined future of London, citizens all across the globe are connected to the Feed, a device and network accessed constantly through a brain-computer interface. Eric is able to use Biometrics to keep Evelyn and Max hostage and get high-level access to the Feed hub. This highlights an example of how computerized security systems might not be able to pick up on hostage situations or forced activity. The Biometrics can recognize their faces, but is unable to pick up on the ‘distress’ visible on Max and Evelyn’s faces that indicate they are in trouble.

  • Kinolab
  • 2019
  • 5 min
  • CNN
  • 2010
image description
Why face recognition isn’t scary — yet

Algorithms and machines can struggle with facial recognition, and need ideal source images to perform it consistently. However, its potential use in monitoring and identifying citizens is concerning.

  • CNN
  • 2010
Load more